Hubble Captures Collision of Gases Near Dying Star This colorful image from the Hubble Space Telescope shows the collision of two gases near a dying star. Astronomers have dubbed the tadpole-like objects in the upper right-hand corner "cometary knots" because their glowing heads and gossamer tails resemble comets. Although astronomers have seen gaseous knots through ground-based telescopes, they have never seen so many in a single nebula. Hubble captured thousands of these knots from a doomed star in the Helix nebula, the closest planetary nebula to Earth at 450 light-years away in the constellation Aquarius. Each gaseous head is at least twice the size of our solar system; each tail stretches 100 billion miles, about 1,000 times the Earth's distance to the Sun. The most visible gaseous fragments lie along the inner edge of the star's ring, trillions of miles from the star at its center. The comet-like tails form a radial pattern around the star like the spokes on a wagon wheel. Astronomers have seen the spoke pattern using ground-based telescopes, but Hubble reveals for the first time the sources of these objects. Astronomers theorize that the gaseous knots are the results of a collision between gases. The doomed star spews the hot gas from its surface, which collides with the cooler gas that it had ejected 10,000 years before. The crash fragments the smooth cloud surrounding the star into smaller, denser finger-like droplets, like dripping paint. Astronomers expect the gaseous knots, each several billion miles across, to eventually dissipate into the cold blackness of interstellar space. This image was taken in August, 1994 with Hubble's Wide Field Planetary Camera 2. The red light depicts nitrogen emission ([NII] 6584A); green, hydrogen (H-alpha, 6563A); and blue, oxygen (5007A). Credit: C. Robert O'Dell and Kerry P. Handron (Rice University), NASA |
Firestorm of Star Birth Seen in a Local Galaxy This festively colorful nebula, called NGC 604, is one of the largest known seething cauldrons of star birth in a nearby galaxy. NGC 604 is similar to familiar star-birth regions in our Milky Way galaxy, such as the Orion Nebula, but it is vastly larger in extent and contains many more recently formed stars. This monstrous star-birth region contains more than 200 brilliant blue stars within a cloud of glowing gases some 1,300 light-years across, nearly 100 times the size of the Orion Nebula. By contrast, the Orion Nebula contains just four bright central stars. The bright stars in NGC 604 are extremely young by astronomical standards, having formed a mere 3 million years ago. Most of the brightest and hottest stars form a loose cluster located within a cavity near the center of the nebula. Stellar winds from these hot blue stars, along with supernova explosions, are responsible for carving out the hole at the center. The most massive stars in NGC 604 exceed 120 times the mass of our Sun, and their surface temperatures are as hot as 72,000 degrees Fahrenheit (40,000 Kelvin). Ultraviolet radiation floods out from these hot stars, making the surrounding nebular gas fluoresce. NGC 604 lies in a spiral arm of the nearby galaxy M33, located about 2.7 million light-years away in the direction of the constellation Triangulum. M33, a member of the Local Group of galaxies that also includes the Milky Way and the Andromeda Galaxy, can be seen easily with binoculars. NGC 604 itself can be seen with a small telescope, and was first noted by the English astronomer William Herschel in 1784. Within our Local Group, only the Tarantula Nebula in the Large Magellanic Cloud exceeds NGC 604 in the number of young stars, even though the Tarantula Nebula is slightly smaller in size. NGC 604 provides Hubble astronomers with a nearby example of a giant star-birth region. Such regions are small-scale versions of more distant "starburst" galaxies, which undergo an extremely high rate of star formation. Starbursts are believed to have been common in the early universe, when the star-formation rate was much higher. Supernovae exploding in these galaxies created the first chemical elements heavier than hydrogen and helium. The image of NGC 604 was assembled from observations taken with Hubble's Wide Field Planetary Camera 2 in 1994, 1995, and 2001. Color filters were used to isolate light emitted by hydrogen, oxygen, nitrogen, and sulfur atoms in the nebula and ultraviolet, visible and infrared light from the stars within NGC 604 and the nearby spiral arms of M33. Image processors from the Hubble Heritage team at the Space Telescope Science Institute combined these various filter images to create this color picture. Image Credit: NASA and The Hubble Heritage Team (AURA/STScI) Acknowledgment: D. Garnett (U. Arizona), J. Hester (ASU), and J. Westphal (Caltech) |
Hubble Telescope Photo Reveals Stellar Death Process This NASA Hubble Space Telescope image of planetary nebula NGC 7027 shows remarkable new details of the process by which a star like the Sun dies. New features include: faint, blue, concentric shells surrounding the nebula; an extensive network of red dust clouds throughout the bright inner region; and the hot central white dwarf, visible as a white dot at the center. The nebula is a record of the star's final death throes. Initially the ejection of the star's outer layers, when it was at its red giant stage of evolution, occurred at a low rate and was spherical. The Hubble photo reveals that the initial ejections occurred episodically to produce the concentric shells. This culminated in a vigorous ejection of all of the remaining outer layers, which produced the bright inner regions. At this later stage the ejection was non-spherical, and dense clouds of dust condensed from the ejected material. The results are being presented by astronomers Howard Bond, Karen Schaefer, and Laura Fullton of the Space Telescope Science Institute, and Robin Ciardullo of Pennsylvania State University, at the 187th meeting of the American Astronomical Society in San Antonio, Texas. "When we saw the Hubble photograph of the nebula NGC 7027, we were astounded by the exquisite wealth of detail that nobody had ever seen before," said Bond. The photograph was taken as part of a survey of planetary nebulae, which are clouds of gas and dust ejected from a star with a mass similar to that of the Sun as it reaches the end of its life. NGC 7027 is located about 3,000 light-years from Earth in the direction of the summer constellation Cygnus. When a star like the Sun nears the end of its life, it expands to more than 50 times its original diameter, becoming a red giant star. Then its outer layers are ejected into space, exposing the small, extremely hot core of the star, which cools off to become a white dwarf. Although stars like the Sun can live for up to 10 billion years before becoming a red giant and ejecting a nebula, the actual ejection process takes only a few thousand years. The NGC 7027 photograph is a composite of two Hubble images, taken in visible and infrared light, and is shown in "pseudo-color." Credit: H. Bond (STScI) and NASA |
Hubble Photographs Turbulent Neighborhood Near Eruptive Star A small portion of the rough-and-tumble neighborhood of swirling dust and gas near one of the most massive and eruptive stars in our galaxy is seen in this NASA Hubble Space Telescope image. This close-up view shows only a three light-year-wide portion of the entire Carina Nebula, which has a diameter of over 200 light-years. Located 8,000 light-years from Earth, the nebula can be seen in the southern sky with the naked eye. Dramatic dark dust knots and complex structures are sculpted by the high-velocity stellar winds and high-energy radiation from the ultra-luminous variable star called Eta Carinae, or Eta Car (located outside the picture). This image shows a region in the Carina Nebula between two large clusters of some of the most massive and hottest known stars. The filamentary structure is caused by turbulence in the circumstellar gas, which in turn was caused by several stars shedding their outer layers. Cold gas mixes with hot gas, leaving a veil of denser, opaque material in the foreground. The chemical elements in the surroundings create a potential reservoir for new star formation. Areas in the brightest parts of the image at the top show elephant-trunk shaped dust clouds that may form into embryonic solar systems. This Hubble image was taken in July 2002 as part of a parallel observing program. The Hubble telescope has several instruments that can be simultaneously used to look at slightly different portions of the sky. In this case, the Space Telescope Imaging Spectrograph was used to study Eta Carinae itself, while the Wide Field Planetary Camera 2 was used to take this image of the nebulosity near Eta Car. This parallel observing mode increases Hubble's efficiency and allows astronomers to probe parts of the sky that they would not otherwise be able to investigate. Produced by the Hubble Heritage team, this color image is a composite of ultraviolet, visible, and infrared filters that have been assigned the colors blue, green, and red, respectively. Image Credit: NASA and The Hubble Heritage Team (AURA/STScI) Acknowledgment: S. Casertano (STScI) |
Hubble Finds an Hourglass Nebula Around a Dying Star This is an image of MyCn18, a young planetary nebula located about 8,000 light-years away, taken with the Wide Field and Planetary Camera 2 (WFPC2) aboard NASA's Hubble Space Telescope (HST). This Hubble image reveals the true shape of MyCn18 to be an hourglass with an intricate pattern of "etchings" in its walls. This picture has been composed from three separate images taken in the light of ionized nitrogen (represented by red), hydrogen (green), and doubly-ionized oxygen (blue). The results are of great interest because they shed new light on the poorly understood ejection of stellar matter which accompanies the slow death of Sun-like stars. In previous ground-based images, MyCn18 appears to be a pair of large outer rings with a smaller central one, but the fine details cannot be seen. According to one theory for the formation of planetary nebulae, the hourglass shape is produced by the expansion of a fast stellar wind within a slowly expanding cloud which is more dense near its equator than near its poles. What appears as a bright elliptical ring in the center, and at first sight might be mistaken for an equatorially dense region, is seen on closer inspection to be a potato shaped structure with a symmetry axis dramatically different from that of the larger hourglass. The hot star which has been thought to eject and illuminate the nebula, and therefore expected to lie at its center of symmetry, is clearly off center. Hence MyCn18, as revealed by Hubble, does not fulfill some crucial theoretical expectations. Hubble has also revealed other features in MyCn18 which are completely new and unexpected. For example, there is a pair of intersecting elliptical rings in the central region which appear to be the rims of a smaller hourglass. There are the intricate patterns of the etchings on the hourglass walls. The arc-like etchings could be the remnants of discrete shells ejected from the star when it was younger (e.g. as seen in the Egg Nebula), flow instabilities, or could result from the action of a narrow beam of matter impinging on the hourglass walls. An unseen companion star and accompanying gravitational effects may well be necessary in order to explain the structure of MyCn18. BACKGROUND: PLANETARY NEBULAE When Sun-like stars get old, they become cooler and redder, increasing their sizes and energy output tremendously: they are called red giants. Most of the carbon (the basis of life) and particulate matter (crucial building blocks of solar systems like ours) in the universe is manufactured and dispersed by red giant stars. When the red giant star has ejected all of its outer layers, the ultraviolet radiation from the exposed hot stellar core makes the surrounding cloud of matter created during the red giant phase glow: the object becomes a planetary nebula. A long-standing puzzle is how planetary nebulae acquire their complex shapes and symmetries, since red giants and the gas/dust clouds surrounding them are mostly round. Hubble's ability to see very fine structural details (usually blurred beyond recognition in ground-based images) enables us to look for clues to this puzzle. Credits: Raghvendra Sahai and John Trauger (JPL), the WFPC2 science team, and NASA |
Hubble Probes the Great Orion Nebula A NASA Hubble Space Telescope image of a region of the Great Nebula in Orion. This is one of the nearest regions of very recent star formation (300,000 years ago). The nebula is a giant gas cloud illuminated by the brightest of the young hot stars at the top of the picture. Many of the fainter young stars are surrounded by disks of dust and gas that are slightly more than twice the diameter of the Solar System. The great plume of gas in the lower left in this picture is the result of the ejection of material from a recently formed star. The brightest portions are "hills" on the surface of the nebula, and the long bright bar is where Earth observers look along a long "wall" on a gaseous surface. The diagonal length of the image is 1.6 light-years. Red light depicts emission in Nitrogen; green is Hydrogen; and blue is Oxygen. The Orion Nebula star-birth region is 1,500 light-years away, in the direction of the constellation Orion the Hunter. The image was taken on 29 December 1993 with the HST's Wide Field and Planetary Camera 2. Credit: C.R. O'Dell/Rice University; NASA |
Hubble Finds a Young Planetary Nebula This is a NASA Hubble Space Telescope picture of a recently-formed "planetary nebula," known as Hen 1357. This expanding cloud of gas was ejected from the aging star in the center. Much of the gas is concentrated in a ring which appears tilted 35 degrees. This research is being presented at the 181st Meeting of the American Astronomical Society meeting in Phoenix, AZ on January 5, 1993. by Dr. Matt Bobrowsky of CTA INCORPORATED, in Rockville, Maryland. Besides the big clumps in the ring, HST's detailed images reveal many smaller clumps and wisps of gas, indicating turbulent motions and other activity in the nebula. Two bubbles of gas seen above and below the ring have burst open at their ends, allowing gas from inside to escape. Previous ground-based spectroscopic observations show that, over the past few decades, Hen 1357 changed from looking like an ordinary hot star to an obiect with the characteristics of a young planetary nebula. Although the central star may have begun to expel gas as much as a few thousand years ago, only recently has there been enough radiation from the star to make the gas glow. Before the Hubble observations, little was known about the nebula's structure because it is too small for anv detail to be seen using ground-based telescopes. Hen 1357 is about 18,000 light-years away and located in the southern constellation Ara the Altar. (The nebulae is so named because it is the 1357th object in a list of unusual stars compiled by astronomer Karl Henize.) The term "planetary nebula" is a misnomer because these objects have nothing to do with planets - aside from vaguely resembling the extended disk of a planet. Planetary nebulae form when an aging star swells to become a "red giant" and it then blows off some of its outer atmosphere. As the nebula expands, the remaining core of the star gets hotter and heats the gas until it glows with the characteristic colors of a planetary nebula. A fast "wind" from the star compresses the gas and pushes the gas bubble outward. A ring-like structure forms if more gas is lost from the star's equator than its poles. Hen 1357 is one of many young planetary nebulae which Bobrowsky is observing with HST. These observations will help astronomers understand how planetary nebula evolve in their early stages. Technical Information: This color photograph is 5 composite of separate images taken at wavelengths of light emitted by two chemical elements in the nebula. The green and yellow light is emitted by oxygen and the red light by hydrogen. The images were made with HST's Wide Field/Planetary Camera (in Planetary Camera mode) during several days in August 1992. Credit: Matt Bobrowsky (CTA INCORPORATED), and NASA. |
SUPERNOVA SHOCK WAVE PAINTS COSMIC PORTRAIT Remnants from a star that exploded thousands of years ago created a celestial abstract portrait, as captured in this NASA Hubble Space Telescope image of the Pencil Nebula. Officially known as NGC 2736, the Pencil Nebula is part of the huge Vela supernova remnant, located in the southern constellation Vela. Discovered by Sir John Herschel in the 1840s, the nebula's linear appearance triggered its popular name. The nebula's shape suggests that it is part of the supernova shock wave that recently encountered a region of dense gas. It is this interaction that causes the nebula to glow, appearing like a rippled sheet. In this snapshot, astronomers are looking along the edge of the undulating sheet of gas. This view shows large, wispy filamentary structures, smaller bright knots of gas, and patches of diffuse gas. The Hubble Heritage Team used the Advanced Camera for Surveys in October 2002 to observe the nebula. The region of the Pencil Nebula captured in this image is about three-fourths of a light-year across. The Vela supernova remnant is 114 light-years (35 parsecs) across. The remnant is about 815 light-years (250 parsecs) away from our solar system. The nebula's luminous appearance comes from dense gas regions that have been struck by the supernova shock wave. As the shock wave travels through space [from right to left in the image], it rams into interstellar material. Initially the gas is heated to millions of degrees, but then subsequently cools down, emitting the optical light visible in the image. The colors of the various regions in the nebula yield clues about this cooling process. Some regions are still so hot that the emission is dominated by ionized oxygen atoms, which glow blue in the picture. Other regions have cooled more and are seen emitting red in the image (cooler hydrogen atoms). In this situation, color shows the temperature of the gas. The nebula is visible in this image because it is glowing. The supernova explosion left a spinning pulsar at the core of the Vela region. Based on the rate at which the pulsar is slowing down, astronomers estimate that the explosion may have occurred about 11,000 years ago. Although no historical records of the blast exist, the Vela supernova would have been 250 times brighter than Venus and would have been easily visible to southern observers in broad daylight. The age of the blast, if correct, would imply that the initial explosion pushed material from the star at nearly 22 million miles per hour. As the Vela supernova remnant expands, the speed of its moving filaments, such as the Pencil Nebula, decreases. The Pencil Nebula, for example, is moving at roughly 400,000 miles per hour. Image Credit: NASA and The Hubble Heritage Team (STScI/AURA) Acknowledgment: W. Blair (JHU) and D. Malin (David Malin Images) |
Embryonic Stars Emerge from Interstellar "Eggs" Eerie, dramatic new pictures from NASA's Hubble Space Telescope show newborn stars emerging from "eggs" — not the barnyard variety — but rather dense, compact pockets of interstellar gas called evaporating gaseous globules (EGGs). Hubble found the "EGGs," appropriately enough, in the Eagle nebula, a nearby star-forming region 6,500 light- years away in the constellation Serpens. "For a long time astronomers have speculated about what processes control the sizes of stars — about why stars are the sizes that they are," said Jeff Hester of Arizona State University, Tempe, AZ. "Now in M16 we seem to be watching at least one such process at work right in front of our eyes." Striking pictures taken by Hester and co-investigators with Hubble's Wide Field and Planetary Camera 2 (WFPC2) resolve the EGGs at the tip of finger-like features protruding from monstrous columns of cold gas and dust in the Eagle nebula (also called M16 — 16th object in the Messier catalog). The columns — dubbed "elephant trunks" — protrude from the wall of a vast cloud of molecular hydrogen, like stalagmites rising above the floor of a cavern. Inside the gaseous towers, which are light-years long, the interstellar gas is dense enough to collapse under its own weight, forming young stars that continue to grow as they accumulate more and more mass from their surroundings. Hubble gives a clear look at what happens as a torrent of ultraviolet light from nearby young, hot stars heats the gas along the surface of the pillars, "boiling it away" into interstellar space — a process called "photoevaporation. "The Hubble pictures show photoevaporating gas as ghostly streamers flowing away from the columns. But not all of the gas boils off at the same rate. The EGGs, which are denser than their surroundings, are left behind after the gas around them is gone. "It's a bit like a wind storm in the desert," said Hester. "As the wind blows away the lighter sand, heavier rocks buried in the sand are uncovered. But in M16, instead of rocks, the ultraviolet light is uncovering the denser egg-like globules of gas that surround stars that were forming inside the gigantic gas columns." Some EGGs appear as nothing but tiny bumps on the surface of the columns. Others have been uncovered more completely, and now resemble "fingers" of gas protruding from the larger cloud. (The fingers are gas that has been protected from photoevaporation by the shadows of the EGGs). Some EGGs have pinched off completely from the larger column from which they emerged, and now look like teardrops in space. By stringing together these pictures of EGGs caught at different stages of being uncovered, Hester and his colleagues from the Wide Field and Planetary Camera Investigation Definition Team are getting an unprecedented look at what stars and their surroundings look like before they are truly stars. "This is the first time that we have actually seen the process of forming stars being uncovered by photoevaporation," Hester emphasized. "In some ways it seems more like archaeology than astronomy. The ultraviolet light from nearby stars does the digging for us, and we study what is unearthed." "In a few cases we can see the stars in the EGGs directly in the WFPC2 images," says Hester. "As soon as the star in an EGG is exposed, the object looks something like an ice cream cone, with a newly uncovered star playing the role of the cherry on top." Ultimately, photoevaporation inhibits the further growth of the embyronic stars by dispersing the cloud of gas they were "feeding" from. "We believe that the stars in M16 were continuing to grow as more and more gas fell onto them, right up until the moment that they were cut off from that surrounding material by photoevaporation," said Hester. This process is markedly different from the process that governs the sizes of stars forming in isolation. Some astronomers believe that, left to its own devices, a star will continue to grow until it nears the point where nuclear fusion begins in its interior. When this happens, the star begins to blow a strong "wind" that clears away the residual material. Hubble has imaged this process in detail in so-called Herbig-Haro objects. Hester also speculated that photoevaporation might actually inhibit the formation of planets around such stars. It is not at all clear from the new data that the stars in M16 have reached the point where they have formed the disks that go on to become solar systems," said Hester, "and if these disks haven't formed yet, they never will." Hester plans to use Hubble's high resolution to probe other nearby star-forming regions to look for similar structures. "Discoveries about the nature of the M16 EGGs might lead astronomers to rethink some of their ideas about the environments of stars forming in other regions, such as the Orion Nebula," he predicted. |
Iridescent Glory of Nearby Planetary Nebula This photograph of the coil-shaped Helix Nebula is one of the largest and most detailed celestial images ever made. The composite picture is a seamless blend of ultra-sharp images from NASA's Hubble Space Telescope combined with the wide view of the Mosaic Camera on the National Science Foundation's 0.9-meter telescope at Kitt Peak National Observatory near Tucson, Ariz. The image shows a fine web of filamentary "bicycle-spoke" features embedded in the colorful red and blue ring of gas. At 650 light-years away, the Helix is one of the nearest planetary nebulae to Earth. A planetary nebula is the glowing gas around a dying, Sun-like star. |
Hubble Captures a Perfect Storm of Turbulent Gases Resembling the fury of a raging sea, this image actually shows a bubbly ocean of glowing hydrogen gas and small amounts of other elements such as oxygen and sulfur. The photograph, taken by NASA's Hubble Space Telescope, captures a small region within M17, a hotbed of star formation. M17, also known as the Omega or Swan Nebula, is located about 5,500 light-years away in the constellation Sagittarius. The image is being released to commemorate the thirteenth anniversary of Hubble's launch on April 24, 1990. The wave-like patterns of gas have been sculpted and illuminated by a torrent of ultraviolet radiation from young, massive stars, which lie outside the picture to the upper left. The glow of these patterns accentuates the three-dimensional structure of the gases. The ultraviolet radiation is carving and heating the surfaces of cold hydrogen gas clouds. The warmed surfaces glow orange and red in this photograph. The intense heat and pressure cause some material to stream away from those surfaces, creating the glowing veil of even hotter greenish gas that masks background structures. The pressure on the tips of the waves may trigger new star formation within them. The image, roughly 3 light-years across, was taken May 29-30, 1999, with the Wide Field Planetary Camera 2. The colors in the image represent various gases. Red represents sulfur; green, hydrogen; and blue, oxygen. Credit: NASA, ESA and J. Hester (ASU) |
RAINBOW IMAGE OF A DUSTY STAR Resembling a rippling pool illuminated by underwater lights, the Egg Nebula offers astronomers a special look at the normally invisible dust shells swaddling an aging star. These dust layers, extending over one-tenth of a light-year from the star, have an onionskin structure that forms concentric rings around the star. A thicker dust belt, running almost vertically through the image, blocks off light from the central star. Twin beams of light radiate from the hidden star and illuminate the pitch-black dust, like a shining flashlight in a smoky room. The artificial "Easter-Egg" colors in this image are used to dissect how the light reflects off the smoke-sized dust particles and then heads toward Earth. Dust in our atmosphere reflects sunlight such that only light waves vibrating in a certain orientation get reflected toward us. This is also true for reflections off water or roadways. Polarizing sunglasses take advantage of this effect to block out all reflections, except those that align to the polarizing filter material. It's a bit like sliding a sheet of paper under a door. The paper must be parallel to the floor to pass under the door. Hubble's Advanced Camera for Surveys has polarizing filters that accept light that vibrates at select angles. In this composite image, the light from one of the polarizing filters has been colored red and only admits light from about one-third of the nebula. Another polarizing filter accepts light reflected from a different swath of the nebula. This light is colored blue. Light from the final third of the nebula is from a third polarizing filter and is colored green. Some of the inner regions of the nebula appear whitish because the dust is thicker and the light is scattered many times in random directions before reaching us. (Likewise, polarizing sunglasses are less effective if the sky is very dusty). By studying polarized light from the Egg Nebula, scientists can tell a lot about the physical properties of the material responsible for the scattering, as well as the precise location of the central (hidden) star. The fine dust is largely carbon, manufactured by nuclear fusion in the heart of the star and then ejected into space as the star sheds material. Such dust grains are essential ingredients for building dusty disks around future generations of young stars, and possibly in the formation of planets around those stars. The Egg Nebula is located 3,000 light-years away in the constellation Cygnus. This image was taken with Hubble's Advanced Camera for Surveys in September and October 2002. Credit: NASA and The Hubble Heritage Team (STScI/AURA) Acknowledgment: W. Sparks (STScI) and R. Sahai (JPL) |
The Coldest Spot In The Universe Revealed in all it's glory in this Hubble Space Telescope image, the Boomerang Nebula registers in at a bone chilling -458F. That's 1° above absolute zero... the point at which atomic activity ceases. Find out more at CNN.com/SPACE. |
Close-Up of M27, the Dumbbell Nebula An aging star's last hurrah is creating a flurry of glowing knots of gas that appear to be streaking through space in this close-up image of the Dumbbell Nebula, taken with NASA's Hubble Space Telescope. The Dumbbell, a nearby planetary nebula residing more than 1,200 light-years away, is the result of an old star that has shed its outer layers in a glowing display of color. The nebula, also known as Messier 27 (M27), was the first planetary nebula ever discovered. French astronomer Charles Messier spotted it in 1764. The Hubble images of the Dumbbell show many knots, but their shapes vary. Some look like fingers pointing at the central star, located just off the upper left of the image; others are isolated clouds, with or without tails. Their sizes typically range from 11 - 35 billion miles (17 - 56 billion kilometers), which is several times larger than the distance from the Sun to Pluto. Each contains as much mass as three Earths. The knots are forming at the interface between the hot (ionized) and cool (neutral) portion of the nebula. This area of temperature differentiation moves outward from the central star as the nebula evolves. In the Dumbbell astronomers are seeing the knots soon after this hot gas passed by. Dense knots of gas and dust seem to be a natural part of the evolution of planetary nebulae. They form in the early stages, and their shape changes as the nebula expands. Similar knots have been discovered in other nearby planetary nebulae that are all part of the same evolutionary scheme. They can be seen in Hubble telescope photos of the Ring Nebula (NGC 6720), the Eskimo Nebula (NGC 2392) and the Retina Nebula (IC 4406). The detection of these knots in all the nearby planetaries imaged by the Hubble telescope allows astronomers to hypothesize that knots may be a feature common in all planetary nebulae. This image, created by the Hubble Heritage Team (STScI), was taken by Hubble's Wide Field Planetary Camera 2 in November 2001, by Bob O'Dell (Vanderbilt University) and collaborators. The filters used to create this color image show oxygen in blue, hydrogen in green and a combination of sulfur and nitrogen emission in red. Image Credit: NASA and the Hubble Heritage Team (STScI/AURA) Acknowledgment: C.R. O'Dell (Vanderbilt University) |
THE INTERPLAY OF STARLIGHT, GAS, AND DUST IN THE LARGE MAGELLANIC CLOUD Complex interactions of starlight with interstellar gas and dust in a nearby galaxy are revealed in a new image obtained by NASA's Hubble Space Telescope and presented by the Hubble Heritage team. Hubble's Wide Field Planetary Camera 2 (WFPC2) was positioned on a small region within a gas cloud, or nebula, called DEM L 106. It belongs to the Large Magellanic Cloud, a galaxy lying 160,000 light-years from our own Milky Way galaxy. DEM L 106 appears in this image as the faint, glowing hydrogen gas that covers most of the picture. This nebula was originally cataloged in the 1970's by astronomers R. Davies, K. Elliot, and J. Meaburn, who created the "DEM" catalogs of both the Large and Small Magellanic Clouds. The smaller and much brighter gas cloud near the top of the image, called N30B, was discovered in the 1950's by astronomer K. Henize, who later became a NASA astronaut. The N30B nebula surrounds a group of hot, blue stars that have recently formed through gravitational contraction of the gas. The ultraviolet radiation streaming out from these blue stars strips electrons off of the hydrogen atoms in the surrounding gas, causing the gas to glow through a process of fluorescence. The very bright star near the upper left corner of the picture is cataloged as Henize S22; it is a very hot and luminous supergiant star, lying only 25 light-years from the N30B nebula. It is a rare and peculiar type of blue star that is believed to be surrounded by a dense, dusty disk. This disk reddens the light from the star, just as the dusty Earth atmosphere reddens sunlight at sunset. As viewed from N30B, S22 would appear some 250 times as bright as the planet Venus does in Earth's sky. This bright starlight illuminates interstellar dust particles in N30B, producing a faint glow around it, called a reflection nebula, that somewhat resembles the numeral 8 turned on its side. The band of gas across the bottom of the image is part of the shell wall of a giant superbubble created by the stellar wind of S22. The shroud of gas surrounding N30B also shows a bow shock from the S22 wind. Lowell Observatory astronomer M.S. Oey and University of Illinois astronomer Y.-H. Chu are members of a science team studying DEM L 106. Along with their collaborators, Oey and Chu have made a clever use of the reflection nebula around N30B. By obtaining spectroscopic observations at various points across the nebula, they can study the spectrum of S22 from different angles. Remarkably, they have found that the star's spectrum changes with viewing angle, confirming that the star is surrounded by a flattened disk of gas, that is probably expelled from its equator. (See supplemental page for more information.) Archived Hubble images of DEM L 106 taken in 1998 were combined with data taken by the Hubble Heritage Team in late 2001. The final image shows emission in hydrogen and ionized sulfur, as well as stellar colors at blue, visual and infrared wavelengths. Credits: NASA and The Hubble Heritage Team (STScI/AURA) Acknowledgment: M.S. Oey (Lowell Observatory) and Y.-H. Chu (U. of Illinois) |
Star Birth in the Trifid Nebula This NASA Hubble Space Telescope image of the Trifid Nebula reveals a stellar nursery being torn apart by radiation from a nearby, massive star. The picture also provides a peek at embryonic stars that are forming within an ill-fated cloud of dust and gas that is destined to be eaten away by the glare from the massive neighbor. This stellar activity is a beautiful example of how the life cycle of stars like our Sun is intimately connected with their more powerful siblings. The Hubble image shows a small part of a dense cloud of dust and gas, a stellar nursery full of embryonic stars. This cloud is about 8 light-years away from the nebula's central star, which is beyond the top of this picture. Located about 9,000 light-years from Earth, the Trifid resides in the constellation Sagittarius. A stellar jet [the thin, wispy object pointing to the upper left] protrudes from the head of a dense cloud and extends three-quarters of a light-year into the nebula. The jet's source is a very young stellar object that lies buried within the cloud. Jets such as this are the exhaust gases of star formation. Radiation from the massive star at the center of the nebula is making the gas in the jet glow, just as it causes the rest of the nebula to glow. The jet in the Trifid is a "ticker tape," telling the history of one particular young stellar object that is continuing to grow as its gravity draws in gas from its surroundings. But this particular ticker tape will not run for much longer. Within the next 10,000 years the glare of the central, massive star will continue to erode the nebula, overrunning the forming star, and bringing its growth to an abrupt and possibly premature end. Another nearby star may have already faced this fate. The Hubble picture shows a "stalk" [the finger-like object] pointing from the head of the dense cloud directly toward the star that powers the Trifid. This stalk is a prominent example of the evaporating gaseous globules, or "EGGs," that were seen previously in the Eagle Nebula, another star-forming region photographed by Hubble. The stalk has survived because at its tip there is a knot of gas that is dense enough to resist being eaten away by the powerful radiation. Reflected starlight at the tip of the EGG may be due to light from the Trifid's central star or from a young stellar object buried within the EGG. Similarly, a tiny spike of emission pointing outward from the EGG looks like a small stellar jet. Hubble astronomers are tentatively interpreting this jet as the last gasp from a star that was cut off from its supply lines 100,000 years ago. The images were taken Sept. 8, 1997 through filters that isolate emission from hydrogen atoms, ionized sulfur atoms, and doubly ionized oxygen atoms. The images were combined in a single color composite picture. While the resulting picture is not true color, it is suggestive of what a human eye might see. Credits: NASA and Jeff Hester (Arizona State University) |
Hubble Photographs 'Double Bubble' in Neighboring Galaxy A unique peanut-shaped cocoon of dust, called a reflection nebula, surrounds a cluster of young, hot stars in this view from NASA's Hubble Space Telescope. The "double bubble," called N30B, is inside a larger nebula. The larger nebula, called DEM L 106, is embedded in the Large Magellanic Cloud, a satellite galaxy of our Milky Way lying 160,000 light-years away. The wispy filaments of DEM L 106 fill much of the image. Hubble captures the glow of fluorescing hydrogen and sulfur, as well as the brilliant blue-white colors of the hot stars. The very bright star at the top of the picture, called Henize S22, illuminates the dusty cocoon like a flashlight shining on smoke particles. This searing supergiant star is only 25 light-years from the N30B nebula. Viewed from N30B, the brilliant star would appear 250 times as bright as the planet Venus does in Earth's sky. Lowell Observatory astronomer M.S. Oey and University of Illinois astronomer Y.-H. Chu are members of a science team studying DEM L 106. Along with their collaborators, Oey and Chu have made a clever use of the reflection nebula around N30B. By obtaining spectroscopic observations at various points across the nebula, they can study the spectrum of S22 from different angles. Remarkably, they have found that the star's spectrum changes with the viewing angle, suggesting that the star is surrounded by a flattened disk of gas expelled from its equator. Astronomers R. Davies, K. Elliot, and J. Meaburn, who created the "DEM" catalogs of both the Large and Small Magellanic Clouds, originally cataloged DEM L 106 in the 1970's. N30B was discovered in the 1950s by astronomer K. Henize, who later became a NASA astronaut. DEM L 106 was imaged with Hubble's Wide Field Planetary Camera 2 (WFPC2). Hubble data taken in 1998 were combined with data taken by the Hubble Heritage Team in late 2001. Credit: NASA and The Hubble Heritage Team (STScI/AURA) Acknowledgment: M.S. Oey (Lowell Observatory) and Y.-H. Chu (U. of Illinois) |
Looking Down a Barrel of Gas at a Doomed Star The NASA Hubble Space Telescope has captured the sharpest view yet of the most famous of all planetary nebulae: the Ring Nebula (M57). In this October 1998 image, the telescope has looked down a barrel of gas cast off by a dying star thousands of years ago. This photo reveals elongated dark clumps of material embedded in the gas at the edge of the nebula; the dying central star floating in a blue haze of hot gas. The nebula is about a light-year in diameter and is located some 2,000 light-years from Earth in the direction of the constellation Lyra. |
An Old Star Gives Up the Ghost NASA's Hubble Space Telescope has recently obtained images of the planetary nebula NGC 6369. This object is known to amateur astronomers as the "Little Ghost Nebula," because it appears as a small, ghostly cloud surrounding the faint, dying central star. NGC 6369 lies in the direction of the constellation Ophiuchus, at a distance estimated to be between about 2,000 and 5,000 light-years from Earth. |
Beauty in the Eye of Hubble A dying star, IC 4406, dubbed the "Retina Nebula" is revealed in this month's Hubble Heritage image. Like many other so-called planetary nebulae, IC 4406 exhibits a high degree of symmetry; the left and right halves of the Hubble image are nearly mirror images of the other. If we could fly around IC4406 in a starship, we would see that the gas and dust form a vast donut of material streaming outward from the dying star. From Earth, we are viewing the donut from the side. This side view allows us to see the intricate tendrils of dust that have been compared to the eye's retina. In other planetary nebulae, like the Ring Nebula (NGC 6720), we view the donut from the top. The donut of material confines the intense radiation coming from the remnant of the dying star. Gas on the inside of the donut is ionized by light from the central star and glows. Light from oxygen atoms is rendered blue in this image; hydrogen is shown as green, and nitrogen as red. The range of color in the final image shows the differences in concentration of these three gases in the nebula. Unseen in the Hubble image is a larger zone of neutral gas that is not emitting visible light, but which can be seen by radio telescopes. One of the most interesting features of IC 4406 is the irregular lattice of dark lanes that criss-cross the center of the nebula. These lanes are about 160 astronomical units wide (1 astronomical unit is the distance between the Earth and Sun). They are located right at the boundary between the hot glowing gas that produces the visual light imaged here and the neutral gas seen with radio telescopes. We see the lanes in silhouette because they have a density of dust and gas that is a thousand times higher than the rest of the nebula. The dust lanes are like a rather open mesh veil that has been wrapped around the bright donut. The fate of these dense knots of material is unknown. Will they survive the nebula's expansion and become dark denizens of the space between the stars or simply dissipate? This image is a composite of data taken by Hubble's Wide Field Planetary Camera 2 in June 2001 by Bob O'Dell (Vanderbilt University) and collaborators and in January 2002 by The Hubble Heritage Team (STScI). Filters used to create this color image show oxygen, hydrogen, and nitrogen gas glowing in this object. Image Credit: NASA and The Hubble Heritage Team (STScI/AURA) Acknowledgment: C.R. O'Dell (Vanderbilt University) |
Hubble Peeks into a Stellar Nursery in a Nearby Galaxy NASA's Hubble Space Telescope has peered deep into a neighboring galaxy to reveal details of the formation of new stars. Hubble's target was a newborn star cluster within the Small Magellanic Cloud, a small galaxy that is a satellite of our own Milky Way. The new images show young, brilliant stars cradled within a nebula, or glowing cloud of gas, cataloged as N 81. These massive, recently formed stars inside N 81 are losing material at a high rate, sending out strong stellar winds and shock waves and hollowing out a cocoon within the surrounding nebula. The two most luminous stars, seen in the Hubble image as a very close pair near the center of N 81, emit copious ultraviolet radiation, causing the nebula to glow through fluorescence. Outside the hot, glowing gas is cooler material consisting of hydrogen molecules and dust. Normally this material is invisible, but some of it can be seen in silhouette against the nebular background,as long dust lanes and a small, dark, elliptical-shaped knot. It is believed that the young stars have formed from this cold matter through gravitational contraction. Few features can be seen in N 81 from ground-based telescopes, earning it the informal nick-name "The Blob." Astronomers were not sure if just one or a few hot stars were embedded in the cloud, or if it was a stellar nursery containing a large number of less massive stars. Hubble's high-resolution imaging shows the latter to be the case, revealing that numerous young, white-hot stars---easily visible in the color picture---are contained within N 81. This crucial information bears strongly on theories of star formation, and N 81 offers a singular opportunity for a close-up look at the turbulent conditions accompanying the birth of massive stars. The brightest stars in the cluster have a luminosity equal to 300,000 stars like our own Sun. Astronomers are especially keen to study star formation in the Small Magellanic Cloud, because its chemical composition is different from that of the Milky Way. All of the chemical elements, other than hydrogen and helium, have only about one-tenth the abundances seen in our own galaxy. The study of N 81 thus provides an excellent template for studying the star formation that occurred long ago in very distant galaxies, before nuclear reactions inside stars had synthesized the elements heavier than helium. The Small Magellanic Cloud, named after the explorer Ferdinand Magellan, lies 200,000 light-years away, and is visible only from the Earth's southern hemisphere. N 81 is the 81st nebula cataloged in a survey of the SMC carried out in the 1950's by astronomer Karl Henize, who later became an astronomer-astronaut who flew into space aboard NASA's space shuttle. The Hubble Heritage image of N 81 is a color representation of data taken in September, 1997, with Hubble's Wide Field Planetary Camera 2. Color filters were used to sample light emitted by oxygen ([O III]) and hydrogen (H-alpha, H-beta). N 81 is the target of investigations by European astronomers Mohammad Heydari-Malayeri from the Paris Observatory in France; Michael Rosa from the Space Telescope-European Coordinating Facility in Munich, Germany; Hans Zinnecker of the Astrophysical Institute in Potsdam, Germany; Lise Deharveng of Marseille Observatory, France; and Vassilis Charmadaris of Cornell University, USA (formerly at Paris Observatory). Members of this team are interested in understanding the formation of hot, massive stars, especially under conditions different from those in the Milky Way. Image Credit: NASA and The Hubble Heritage Team (STScI/AURA) Acknowledgment: Mohammad Heydari-Malayeri (Paris Observatory, France) |
A Giant Star Factory in Neighboring Galaxy NGC 6822 Resembling curling flames from a campfire, this magnificent nebula in a neighboring galaxy is giving astronomers new insight into the fierce birth of stars as it may have more commonly happened in the early universe. The glowing gas cloud, called Hubble-V, has a diameter of about 200 light-years. A faint tail of nebulosity trailing off the top of the image sits opposite a dense cluster of bright stars at the bottom of the irregularly shaped nebula. NASA's Hubble Space Telescope's resolution and ultraviolet sensitivity reveals a dense knot of dozens of ultra-hot stars nestled in the nebula, each glowing 100,000 times brighter than our Sun. These youthful 4-million-year-old stars are too distant and crowded together to be resolved from ground-based telescopes. The small, irregular host galaxy, called NGC 6822, is one of the Milky Way's closest neighbors and considered prototypical of the earliest fragmentary galaxies that inhabited the young universe. The galaxy is 1.6 million light-years away in the constellation Sagittarius. The Hubble-V image data was taken with Hubble's Wide Field Planetary Camera 2 (WFPC2) by two science teams: C. Robert O'Dell of Vanderbilt University and collaborators, and Luciana Bianchi of Johns Hopkins University and Osservatorio Astronomico, Torinese, Italy, and collaborators. This color image was produced by The Hubble Heritage Team (STScI). A Hubble image of Hubble-X, another intense star-forming region in NGC 6822, was released by The Heritage Team in January 2001. |
THE GLOWING EYE OF NGC 6751Astronomers using NASA's Hubble Space Telescope have obtained images of the strikingly unusual planetary nebula, NGC 6751. Glowing in the constellation Aquila like a giant eye, the nebula is a cloud of gas ejected several thousand years ago from the hot star visible in its center. |
Blowing Cosmic BubblesThis NASA Hubble Space Telescope image reveals one of the most bizarre objects in the sky. And.. it just so happens to be located in this weeks constellation, Cassiopeia. This expanding shell of glowing gas surrounds a hot, massive star in our own Milky Way Galaxy. This shell is being shaped by strong stellar winds of material and radiation produced by the bright star at the left, which is 10 to 20 times more massive than our Sun. These fierce winds are sculpting the surrounding material - composed of gas and dust - into the curve-shaped bubble. Astronomers have dubbed it the Bubble Nebula (NGC 7635). The nebula is 10 light-years across, more than twice the distance from Earth to the nearest star. Only part of the bubble is visible in this image. The glowing gas in the lower right-hand corner is a dense region of material that is getting blasted by radiation from the Bubble Nebula's massive star. The radiation is eating into the gas, creating finger-like features. This interaction also heats up the gas, causing it to glow. Scientists study the Bubble Nebula to understand how hot stars interact with the surrounding material. In case you're interested (of course you are) NGC 7635 is mag8.5. This is well within the range of amateur telescopes. It is found by following the line extending from alpha through beta Cassiopeia almost to the western border with Cephus. Obviously your views won't match that of Hubble's... but anytime you can view an object that is 11,000+ light years away, you've accomplished something! |
IC 418: The "Spirograph" Nebula A planetary nebula represents the final stage in the evolution of a star similar to our Sun. The star at the center of IC 418 was a red giant a few thousand years ago, but then ejected its outer layers into space to form the nebula, which has now expanded to a diameter of about 0.2 light-year. The stellar remnant at the center is the hot core of the red giant, from which ultraviolet radiation floods out into the surrounding gas, causing it to fluoresce. Over the next several thousand years, the nebula will gradually disperse into space, and then the star will cool and fade away for billions of years as a white dwarf. Our own Sun is expected to undergo a similar fate, but fortunately this will not occur until some 5 billion years from now. The Hubble image of IC 418 is shown in a false-color representation, based on Wide Field Planetary Camera 2 exposures taken in February and September, 1999, through filters that isolate light from various chemical elements. Red shows emission from ionized nitrogen (the coolest gas in the nebula, located furthest from the hot nucleus), green shows emission from hydrogen, and blue traces the emission from ionized oxygen (the hottest gas, closest to the central star). The remarkable textures seen in the nebula are newly revealed by the Hubble telescope, and their origin is still uncertain.
|
Planetary Nebula Mz3 |
Rising from a sea of dust and gas like a giant seahorse, the Horsehead nebula is one of the most photographed objects in the sky. NASA's Hubble Space Telescope took a close-up look at this heavenly icon, revealing the cloud's intricate structure. This detailed view of the horse's head was released to celebrate the orbiting observatory's eleventh anniversary. Produced by the Hubble Heritage Project, this picture is a testament to the Horsehead's popularity. Internet voters selected this object for the orbiting telescope to view. |
3 comments:
I am surprised to see all these images by Hubble. We are exploring the secrets of Universe one by one. Tremendous collection.
Congrats !
Aravindan.N.
aravindannkl@yahoo.in
Anyone interested in Astronomy, please contact - aravindannkl@yahoo.in
I am surprised to see all these images by Hubble. We are exploring the secrets of Universe one by one. Tremendous collection.
Congrats !
Aravindan.N.
aravindannkl@yahoo.in
Post a Comment